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Abstract. The self-consistent electronic structures of ideal vacancies in nine 111-V compound 
semiconductors and in Si and Ge have been calculated using the spin-unrestricted density- 
functional theory and the linear muffin-tin-orbital Green function method. Moreover, 
anti-site defects in these compound semiconductors have been investigated. The ionisation 
levels in the band gap have been determined from the total energies for all types of 
vacancies in different charge states. The trends in the ionisation level positions are studied 
when the width of the band gap and the ‘size’ of the vacancy are varying from one host 
to another. The results are compared with previous calculations and experiments, and the 
effects due to lattice relaxation are discussed. 

1. Introduction 

Point defects have a crucial role in determining the optical and electrical properties 
of semiconductors, and therefore the understanding of their electronic structures, their 
behaviour under different conditions, and especially their microscopic identification 
are of great importance for pure and applied semiconductor physics [l, 21. One of 
the important issues is the deep levels in the band gap, induced by defects [3, 41. 
They are localised electron states, which may trap charge carriers. Their energetics are 
characterised by ionisation levels, i.e. those positions of the equilibrium Fermi level at 
which the occupation of the deep level, and thus also the charge of the defect, change. 
Many experimental techniques, e.g. deep-level-transient spectroscopy, optical methods 
and electron spin resonance techniques, can measure the positions of the ionisation 
levels, and can thereby provide information for the identification of the corresponding 
defect [3]. Theoretical calculations which can predict the deep-level energetics and 
symmetry properties are essential for achieving this goal. 

Vacancies and anti-sites are among the most important native defects in semicon- 
ductors. In this paper we present theoretical results for ideal (non-relaxed) vacancies 
and anti-sites in nine different compound semiconductors. Vacancies in Si and Ge are 
also calculated. The purpose is to provide a consistent data basis for the ionisation 
levels and thereby enable comparisons and studies of trends between different hosts. 
The calculations without lattice relaxation are valuable, because the unambiguous de- 
termination of the relaxation by total energy methods is still a difficult task [5 ]  and 
not amenable to systematic trend studies. Moreover, due to previous controversial the- 
oretical results for some important unrelaxed defects a recalculation by a new type of 
method is called for. The knowledge of the ionisation levels for vacancies is especially 
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important for the defect studies by positron lifetime spectroscopy [6, 71. This is because 
the method is sensitive only to vacancies which are negative or neutral; positively 
charged vacancies are excluded due to the strong Coulomb repulsion. 

In this work we use the linear muffin-tin-orbital method (LMTO) [8, 91 to calculate 
the self-consistent electronic structures for bulk semiconductors, and the corresponding 
Green function scheme [lo] is employed in the case of vacancies. The atomic-sphere 
approximation (ASA) is used throughout. Previously the deep levels have been pre- 
dicted within the density fuctional approach by using the pseudopotential or cluster 
approaches. An LMTO ASA scheme has been applied before in the case of point defects 
in semiconductors to calculate the properties of chalcogen [l 11 and transition-metal 
[12] impurities in Si. The method has previously been used for vacancies in Si and 
GaAs, but the ionisation levels were not determined at that time [13]. One of the 
benefits of the LMTO method (cf the pseudopotential methods) is that it provides a 
unified basis for calculating the electronic properties of materials consisting from dif- 
ferent elements, and thereby the LMTO method enables comparisons between different 
semiconductors. 

In 92 we shall briefly describe the most important points of our Green function 
approach. The technical aspects have already been published elsewhere [lo, 131. 
The results are presented in 93, where they are also discussed and compared with 
experiments and previous theoretical works. Section 4 contains the conclusions. 

2. Calculation scheme 

The calculations are based on the density-functional approach, and involve two kinds 
of approximations. The first deal with electronic exchange and correlation, while the 
second are related to the solution of the one-particle Kohn-Sham equations in the 
relevant geometry. In this work we have made the following approximations: (i) the 
local-density approximation (LDA) for the electron exchange and correlation and (ii) the 
frozen-core approximation are the fundamental ones. The more technical approxima- 
tions are (iii) the linearisation in LMTO and (iv) the atomic-sphere approximation (ASA). 
An important related issue is the correction of the energy gap widths by (v) the ‘scissors’ 
operator [14]. In this section we first describe these approximations and then give a 
general outline of the Green function method. A more complete description of the 
technical details of the present method can be found in [13]. 

The spin-unrestricted density functional formalism is used for defect calculations 
which, because of the occupation of the deep levels according to Hund’s rules, lead 
to different spin-up and spin-down densities. The exchangexorrelation energy and 
potential are calculated from an interpolation equation based on Ceperley and Alder’s 
many-body calculations [ 151. The valence electron density is calculated self-consistently, 
but in the frozen-core approximation the atomic orbitals are used for the core electrons 
in the solid. 

The linearisation in LMTO [8, 91 means that the spherical (in our calculations, scalar 
relativistic) Schrodinger equation inside an atomic sphere (see ASA below) is solved 
exactly only for one energy E V R I ,  which depends on the site R and on the angular 
momentum quantum number 1. In this work the EtRi  are chosen to coincide with 
the centre of mass of the RI projection of the valence charge, except for the cases 
where the d component for the group 111 atom is shifted to higher energies in order 
to avoid the so-called ‘ghost’ bands. The wavefunctions around E,, are calculated 
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using the first-order Taylor expansion in ( E  - E,,). Because the variational principle 
is used in constructing the (Bloch symmetry) wavefunctions in the crystal lattice, the 
energy eigenvalues (the band structure), and the wavefunctions are in fact correct to 
second order, ( E  - The energy eigenvalues can be corrected to third order by a 
perturbative method but, because for the calculation of the Green function we want 
the energy eigenvalues and wavefunctions to be consistent, this step is not taken. 

The most severe approximation made is the ASA. This approximation means that 
potentials and charge densities are spherical averages within spheres. The spheres fill 
the whole crystal space leaving no interstitial space. In this work the systems have a 
zincblende (or diamond) structure and we use four spheres per unit cell. Two of them 
are centred at host nuclei and two are at tetrahedral interstitial sites. For simplicity, all 
spheres have equal radii and in all of them the wavefunctions are described using s, p 
and d partial waves. 

It is well known that the density-functional theory in LDA predicts minimum band 
gaps which are typically of the order of 50% too small [16]. This is a serious flaw in 
applications where one is interested in bound states within the band gap. To remedy 
this, we use the simple ‘scissors’ operator [14], i.e. we shift the conduction bands 
rigidly to obtain the experimental band gap before calculating the unperturbed Green 
function. The scissors operator merely shifts the energy zero and thus the wavefunctions 
used in calculating the Green function are not affected. The validity of the scissors 
operator requires that the differences between the true quasiparticle energy bands and 
the density-functional LDA bands do not depend strongly on the k-vector and energy. 
According to a recent calculation [17], this is true within 0.1, 0.2, 0.2 and 0.4 eV for 
the uppermost valence band and the lowest conduction band in Si, GaAs, AlAs and 
C, respectively. Thus the situation is quite satisfactory, except perhaps for C which, on 
the other hand, has a wide band gap of 5.5 eV. 

With these approximations we first calculate the self-consistent band structures of 
the perfect crystal lattices. The imaginary part of the unperturbed Green function Go 
is proportional to the unperturbed projected density of states (DOS) N ,  

Im G o ( E )  = z N o ( E )  

and the real and imaginary parts of the 
point z in the complex energy plane by 

Green function can be calculated for a general 
the Hilbert transform 

A point defect induces a perturbed region in the host. In the case of a vacancy in 
a zincblende structure a sphere containing the host atom is substituted by an ’empty’ 
sphere. The Green function G for the perturbed system is obtained by solving the 
Dyson equation 

(1 + G,AV)G = Go (3) 

where AV is a defect-induced perturbation in the effective potential. Due to screening 
the perturbation in the potential is well localised. In practice therefore, we choose the 
perturbed region to consist only of the central defect sphere, the four empty spheres 
and four nearest-neighbour atom spheres adjacent to it. The electron density and the 
defect-induced potential are solved self-consistently in an iteration loop : we start from 
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a guessed potential and insert that in the Dyson equation, which gives the perturbed 
Green function. The imaginary part is then used to calculate the perturbed density of 
states (DOS) and the electron density. The electron density determines the new potential, 
which is used to start the next iteration. Iterations are continued until self-consistency 
is achieved in the electron structure. 

The benefit of the Green function method is that although the perturbed region 
is limited, single-particle wavefunctions can extend beyond it. The electrons bound at 
deep levels in vacancies are localised so that typically in our ASA calculations only 
about 30% of the electron is in the perturbed region, mainly in the atomic spheres 
adjacent to the vacancy sphere. (There the charge has a strong p character around the 
nuclei, and thus this distribution reflects the charge accumulation into the dangling 
bonds.) This should be contrasted with cluster calculations for point defects, where the 
confinement of the wavefunctions in the cluster may cause spurious results. 

In practical calculations [13] the values of the unperturbed Green function along 
the integration path on the complex energy plane are calculated from the projected 
number of states (NOS) (= integrated density of states (DOS)) on the real energy axis 
using the Hilbert transform. The use of NOS instead of DOS reduces considerably the 
number of points needed in the Hilbert transform. The use of the complex energy 
integration path makes possible an accurate calculation of the electron density in perfect 
and perturbed systems with few energy points. Another commonly used scheme is to 
calculate the real and imaginary parts of the Green function on the complex plane 
directly from the unperturbed wavefunctions and band structure, but the use of the 
Hilbert transform is in our case faster. The electron densities corresponding to both the 
delocalised states and the bound states are calculated by integrating along the path in 
the complex energy plane. The energy eigenvalues of the bound states are determined 
by searching in the band gap for the zeros of the determinant of the matrix multiplying 
the perturbed Green function in the Dyson equation (3). 

In the case of charged defects the long-range Coulomb potential causes additional 
complications, because in the calculations the changes in the potential are limited in 
the perturbed region. We have taken the effects due to the Coulomb tail into account 
by shifting the potential in the perturbed region by the amount of Q/c eV (see [18]). 
Here Q is the charge of the defect and e the static dielectric constant of the host 
semiconductor. In the case of Si this shift is about 0.1 eV per unit change in the charge 
state. The scaling by the dielectric constant gives slight variations between different 
materials. 

The ionisation levels for defects in semiconductors are determined as those positions 
of the chemical potential (Fermi level), at which the charge of the defect in the stable 
state changes. The ionisation levels can be calculated from the density-functional total 
energies of the defect in different charge states [19]. Actually, these energies are the 
defect-induced changes in total energy of the infinite system. The total energy A.E(N, p )  
for the defect with charge Q depends on the position of the chemical potential p as 

where AE(Q,e,*) is the total energy given by the Green function method with the 
chemical potential at el ,  which is the end point of the energy integration loop around 
the valence band. ef is in the band gap just above the top of the valence band. Equation 
(4) means that there is a reservoir of electrons at the energy p. In the case of a positive 
defect (Q > 0) we have to raise Q electrons to this reservoir, and therefore for a positive 
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defect AE(Q, p )  is a linear function of p increasing with the slope Q. Similarly, we get a 
linearly decreasing function for negative defects (Q < 0), and a constant for a neutral 
defect. The ionisation level (Q + 1, Q) is then the solution of 

with respect to p .  The ionisation levels are obtained as a difference between two total 
energies. Therefore we expect that errors originating e.g. from ASA should largely 
cancel. 

3. Results and discussion 

3.1. Perfect lattice electron structures 

The relevant experimental data [20], i.e. lattice constants, band gaps and dielectric 
constants for the investigated semiconductors are collected in table 1. 

Table 1. Data for semiconductors used in the calculations [20]. The experimental lattice 
constants a, experimental band gaps E r P  and its character, i.e. direct (d) or indirect (i). 
and the dielectric constants E are given. The theoretical band gaps ELheor resulting from 
our second order LMTO ASA calculations are also shown. 

Etheor Semiconductor a (au) E r P  (eV) d/i E (ev) 

Si 
Ge 

AIP 
AlAs 
AlSb 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 

10.26 1.12 
10.70 0.75 

10.30 2.51 
10.61 2.21 
11.61 1.71 
10.30 2.35 
10.68 1.52 
11.57 0.81 
11.09 1.42 
11.45 0.41 
12.26 0.24 

i 11.7 0.53 
i 16.0 0.49 

i 9.8 1.63 
i 10.1 1.47 
i 11.2 1.16 
i 10.9 1.56 
d 12.5 1.38 
d 15.7 0.74 
d 12.6 1.67 
d 15.2 0.59 
d 16.8 0.42 

The band gaps resulting from our calculations are also shown in table 1. The 
theoretical band gaps for the direct-gap semiconductors are rather large compared 
with other self-consistent LDA calculations. This is evidently due to the ‘one-particle’ 
approximations, i.e. the linearisation to second order in ( E  - E , )  and the ASA. The 
treatment of the outermost d shell as core electrons may also affect the results in 
the case Ga and In compounds. For example, our LMTO ASA calculations to second 
order in ( E  - E,)  give in the case of GaAs a gap of 1.38 eV. If the energy bands are 
corrected to third order, we obtain a narrower gap of 0.74 eV, which is in a better 
agreement with previous LMTO and pseudopotential calculations [21]. Previous LMTO 
calculations have shown that going beyond the ASA decreases the band gap and the most 
accurate, fully relativistic calculations give a band gap of only 0.25 eV. The situation 
in our calculations with these approximations is analogous to the pseudopotential 
Green function calculations with an incomplete plane-wave basis. Pseudopotential 
calculations of this type by Baraff and Schluter [22] have also given a rather large 
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Figure 1. Scalar relativistic energy band structure for GaAs. The bands are calculated to 
second order in E - E ,  within the ASA. 
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Figure 2. Density of states (DOS) and the integrated density of states (NOS) for GaAs. The 
energy scale is the same as in figure 1. 

ba d gap nd as a result they have omitted the scissors operator in consequent Green 
function calculations. 

As an example of the electronic structures of 111-V compound semiconductors 
the energy bands and the density of states for GaAs are shown in figures 1 and 2, 
respectively. The lowest band shown arises from the As 4s states. Above that there is 
the heteropolar energy gap and the valence band. In the density of states the lowest 
peak in the valence band at an energy of about -0.55 Ryd corresponds to mainly 
s-like states at the Ga site. The truncated peak in the upper part of the valence band 
is mainly due to the p-like states at the As site. The band gap is direct and the main 
character of the lowest states in the conduction band is s type at the Ga site. 

3.2. Vacancies 

The calculated change in the density of states due to the Ga vacancy in GaAs (VGJ is 



Point defects in compound semiconductors 7353 

shown in figure 3. The results correspond to a neutral vacancy and the majority spin. 
Actually, in this case the dependence on the spin is rather weak. Only the contributions 
belonging to the A, (s-like states at the vacancy) and T, (p-like states at the vacancy) 
representations of the T, point group are shown. The other three representations 
contribute much less to the change in the DOS. For practical convenience the changes 
in the DOS have been drawn for energies with a small constant imaginary part. Therefore 
the features in figure 3 are smoothed and e.g. the bound states appear as peaks with 
finite widths. 

30t A 1 
20 

10 

0 - 
c 

3 -10 

- 2 0 2  
-1.1 -0.9 -0 .7 -0.5 -0.3 -0.1 0.1 0.3 

Energy ( R y d l  

Figure 3. Changes in the density of states of (a) A1 and ( b )  T2 symmetries induced by 
a Ga vacancy in GaAs. The positions of the band gaps are given by shaded boxes. The 
energy scale is the same as in figure 1. 

The Ga vacancy pushes the states to higher energies. In the A, representation s-like 
states are removed from the As 4s band and from the bottom of the valence band 
and states are added as a bound state in the heteropolar gap and as a resonance near 
the top of the valence band. The A, changes in the DOS integrate to zero over the 
valence band energies, which means that there is no net loss of A, electrons from the 
valence band due to the formation of a Ga vacancy. In the T, changes to the DOS the 
important feature is the removal of p-like states from the region below the top of the 
valence band and the appearence of a bound state (the peak inside the shaded box in 
figure 3), i.e. a deep level, in the band gap. The T, change in the DOS integrated up 
to the top of the valencc band indicates the removal of six electrons from the valence 
band. Because the creation of a Ga vacancy means that three valence electrons are 
taken out of the system, a neutral Ga vacancy is obtained by the occupation of the 
bound T, state in the band gap by three electrons. By varying the occupancy of the 
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bound state different charge states of the vacancies are obtained. The change in the 
density of states due to the As vacancy is very similar to that given for the Ga vacancy 
in figure 3. The main difference is that the states are pushed more strongly upwards 
because of the larger size of the anion vacancy VAS compared with the cation vacancy 
VGa. As a consequence the bound T, state for the former is at the upper part of the 
band gap whereas the latter induces a bound state near the valence band edge. In 
order to obtain a neutral As vacancy one electron has to occupy the bound states. The 
electron structures of the vacancies in other 111-V semiconductors are rather similar to 
those for vacancies in GaAs. Typically anion vacancies induce donor-type deep levels 
near the conduction band edge, whereas cation vacancies induce acceptor-type levels 
near the valence band edge. 

The results for the positions of the ionisation levels for vacancies are collected in 
table 2. In Si and Ge vacancies there are several levels spread throughout the energy 
gap, and the vacancies can be negative, neutral or positive. The cation vacancies of the 
111-V compound semiconductors have ionisation levels in the lower half of the band 
gap. The cation vacancies exist only in negative or neutral states, except in AlP and 
AlAs, where the upward shift of the electron states due to the A1 vacancy is so strong 
that there are also singly positive charge states. The anion vacancies are positive when 
the Fermi level is far from the conduction band. In the small-band-gap semiconductors 
InAs and InSb and in AlP cation vacancies do not reach the neutral state when the 
Fermi level is shifted towards the conduction band edge. Negative charge states exists 
for anion vacancies in AlSb, Gap, GaAs and GaSb. In the large-band-gap compounds 
Alp, AlAs, AlSb and GaP the anion vacancy pushes s-type states from the valence 
band to the band gap, and ionisation levels appear due to the change in the occupation 
of the A,-symmetry deep level. 

Table 2. Calculated positions of the ionisation levels in semiconductor vacancies. The 
energies are given relative to the top of the valence band. The symmetry of the one-particle 
energy level, the occupation of which is changing, is Tz, except in the few cases shown 
where it is Al.  

Semiconductor Vacancy Ionisation Energy Symmetry 
level (ev) 

Ge 

AIP 

0.45 
0.55 
0.66 
0.92 
1 .oo 
0.16 
0.21 
0.27 
0.42 
0.49 

0.24 
0.66 
0.90 
1.11 

0.15 Ai 
0.53 A1 



Point defects in compound semiconductors 7355 

Table 2. (Continued) 

____ 

Semiconductor Vacancy Ionisation Energy Symmetry 
level (eV) 

AlAs VAl 

VAS 

AlSb 

GaP 

GaAs 

GaSb 

InP 

InAs 

VA I 

VS b 

VGa 

VP 

VGa 

VAS 

VP 

VI n 

0.20 
0.53 
0.73 
0.92 

0.13 
0.46 
2.11 

0.30 
0.42 
0.55 

0.27 
1.36 
1.46 
1.57 

0.32 
0.49 
0.68 
0.24 
1.79 
1.94 
2.08 

0.11 
0.22 
0.33 

1.20 
1.30 
1.39 

0.17 

0.70 
0.77 

0.14 
0.20 
0.38 

1.37 

0.10 
0.13 
0.23 

Always positive 

(3-/2-) 0.15 

Always positive 

The distances between the adjacent ionisation levels in vacancies depend rather 
linearly on the width of the band gap. For the small-band-gap semiconductors studied 
the distance is about 0.05 eV whereas for the large-band-gap compounds it is over 
0.2 eV. Our calculations are spin dependent and, according to Hund's rules, the spatially 



7356 M J Puska 

triply degenerate T, states have been filled first by three spin-up electrons and thereafter 
the filling of spin-down states has been started. This spin dependence is reflected as 
a (1.5-2.5 times) larger gap between the ionisation levels when the first spin-down 
electron is introduced than in other changes to the charge state. Therefore there is a 
larger gap between the levels (-/0) and (2- / - )  in Si and Ge. In 111-V compounds this 
happens between (O/+)  and (-/0) for cation vacancies, and is seen in the cases of AlP 
and AlAs. In cation vacancies this large gap should exist between (2-/-) and (3-/2-), 
but is not seen in our results because the latter level is pushed into the conduction 
band. 

2.5 

2.0 

1.5 - 
2 
h 

w 
W 

m 

1.0 

0.5 

0 

I 
1 

I 

l e- 

4.0 4.5 5.0 

lld2 (units o f  IOe2 a i 2 ,  
Figure 4. Bottom of the conduction band and the 
ionisation levels for anion and cation vacancies in 
Alp, AlAs, and AlSb relative to the top of valence 
band. The abscissa is the square of the inverse of the 
bond length d. The regions of different charge states 
are also shown. 

2.5 

2.0 

1.5 

I 

2 

P 
F 1.0 

x 

W 

0.5 

0 

lid2 (un i ts  o f  a ~ * I  

Figure 5. Same as figure 4 but for Gap, GaAs, and 
GaSb. 

In order to study more carefully the trends in ionisation levels we have plotted in 
figures 4-6 the ionisation levels and the bottom of the conduction band relative to 
the top of the valence band as a function of the inverse square of the bond length d.  
According to the model by Harrison [23], the band gap widths should behave as d-,. 
The trends are followed when the cation is kept the same and the anion is varied. The 
trends when the cation is changing cannot be plotted this way, because the 'size' of the 
anion determines the lattice constant when the cation is A1 or Ga. Figures 4-6 show 
that the ionisation levels generally follow the same increasing trend as the bottom of 
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3.5 4.0 4.5 

l i d '  (units o f  a;')  

Figure 6. Same as figure 4 but for InP, InAs, and InSb. 

the conduction band. In A1 compounds the anion vacancy levels seem to rise faster 
than the bottom of the conduction band. One result from this tendency is that the 
P vacancy in AlP has only positive charge states. In Ga and In compounds the rise 
of the anion vacancy levels is similar to or even slower than the rise of the bottom 
of the conduction band. The most prominent consequence from this behaviour is 
that the anion vacancies in the narrow-gap semiconductors InSb and InAs are always 
positive. The different behaviour of the anion vacancy levels in A1 compounds may 
reflect the fact that all these compounds have an indirect band gap whereas the other 
111-V compounds (except Gap) have a direct band gap, and thus the lowest energy 
states of the conduction band have different character in the two cases. This conclusion 
is supported by the trend shown by the uppermost ionisation levels in Si and Ge 
vacancies (see figure 7), because these semiconductors have an indirect band gap. 

The cation vacancies have in all cases negative charge states. The vacancies in A1 
compounds push the ionisation levels upwards more strongly than vacancies in the 
other compounds. In other words, vacancies in A1 compounds are seen to be stronger 
perturbations than vacancies in the Ga and In compounds. As a result A1 vacancies in 
AlAs and AlP are found to exist also in a singly positive state. 

3.3. Anti-site defects 

The change in DOS due to the AsGa anti-site in GaAs is shown in figure 8. In the 
AsGa anti-site one Ga site is occupied by an As atom. AsGa pulls states downwards. 
Therefore with the A, (s-type states at As) change in the DOS in figure 8 three bound 
states appear below the bottoms of different bands. The T, (p-type at As) change in the 
DOS also shows a Iowering of the different states, but results in resonances above the 
band bottoms, where there are s-type states in the unperturbed system. The changes in 
the DOS integrate to zero over the valence band energies. Therefore, in order to obtain 
a neutral system, the A,-type bound state in the band gap near the conduction band 
has to be occupied by two electrons. The other possible charge states are + and 2f. 
The GaAs anti-site pushes states upwards in a similar way to vacancies. A T, state is 
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lifted to the band gap, and in a neutral defect it is occupied by four electrons. The 
electronic structures of anti-sites in other compound semiconductors are similar. Anion 
anti-sites (e.g. As,,) induce donor-type states whereas cation anti-sites (e.g. Ga,,) lead 
to acceptor-type states. 

Table 3. Calculated positions of the ionisation levels for anti-site defects in semiconductors. 
The energies are given relative to the top of the valence band. The symmetry of the 
one-particle energy level, the occupation of which is changing, is T2 or A1 as shown. 

Semiconductor Anti-site Ionisation Energy Symmetry 
level (ev) 

AIP Alp 

AlAs 

AlSb 

GaP 

GaAs 

GaSb 

InP 

InAs 

PGa 

PI" 

InAs 

0.17 
0.60 
0.84 
1.12 
1.86 
2.15 

0.41 
0.63 
0.88 
1.64 
1.87 

0.14 
0.25 
0.40 
1.50 
1.62 

0.30 
0.46 
0.68 
1.59 
1.83 

0.11 
0.28 
0.88 
1.07 

Charge state -2 

Charge state +2 

Pi+) 0.24 
(-/O) 0.36 
i2-/-) 0.51 

@/+I 0.44 

(O/+) 0.12 
(-10) 0.21 
(2-/-) 0.32 

Charge state 0 

P - 1  0.11 
Charge state +2 
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The results for the ionisation levels induced by the anti-site defects are collected in 
table 3. Cation anti-sites push a T,-symmetry state into the band gap. The perturbation 
is strongest in the large band gap semiconductors as in the case of vacancies. The 
weakest perturbation is seen to be due to the Gas,, for which the T, states form a 
resonance in the valence band and the defect has only the doubly negative charge state. 
Anion anti-sites pull an A,-symmetry state from the conduction band into the band 
gap. The efficiency of pulling the state downwards decreases as the size of the anion 
increases in the sequence P-As-Sb. Sb anti-sites in GaSb and InSb are not able to pull 
states into the band gap and therefore they are always in the doubly negative state. 
One interesting prediction of the present calculations is that in GaSb there are no deep 
levels due to anti-site defects. 

CONDUCTION BAND 

1 I 
AIAs AIP 

Figure 9. Ionisation levels for cation and anion anti- 
sites in Alp, AlAs and AlSb. The levels for the cation 
anti-sites are shown relative to the top of the valence 
band and for anion anti-sites relative to the bottom 
of the conduction band. The abscissa is the square 
of the inverse of the bond length d. The regions of 
different charge states are also shown. 
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Figure 10. Same as figure 9 but for Gap, GaAs, and 
GaSb. 

In order to see the trends more clearly the ionisation levels are plotted in figures 
9-1 1 as a function of the inverse square of the bond length. The levels due to the cation 
anti-sites are plotted relative to the top of the valence band, whereas the reference for 
levels induced by the anion anti-sites is the bottom of the conduction band. The 
ionisation levels show smooth trends confirming that the results corresponding to 
different hosts are consistent with each other. The main trend is that the ionisation 
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levels are pushed further away from the band edges when the band gap increases. 
Figure 11 explains nicely why it is possible that AsIn is always neutral, whereas Sb,, 
has only the doubly positive charge state. 

3.4. Comparison with previous theoretical and experimental results 

In the case of point defects in semiconductors the first self-consistent electron structure 
calculations based on the Green function method were performed about one decade ago 
for the ideal neutral vacancy i n  silicon [24, 251. The calculations used pseudopotentials 
and the important result obtained was that there exists a deep doubly occupied bound 
state slightly above the middle of the gap. This feature is reproduced by our calculations, 
too. However, according to thi: present understanding [3, 261 the real situation is more 
complicated, due to the influence of ionic relaxation on the electron states. When there 
are no electrons on the deep levels, i.e. in the case of V z ,  only symmetry-conserving 
breathing relaxation occurs and the symmetry group is T,. In the case of Vd there 
is one electron on a deep lekel and a tetragonal relaxation lowers the symmetry to 
D2,. The driving force behind this relaxation is the Jahn-Teller effect in which the 
symmetry lowering removes 1 he spatial degeneracy of the deep levels and the total 
energy of the defect decreases. The second electron added leads to a neutral state 
V:. It has the opposite spin relative to the other electron, and therefore the symmetry 
remains D,,, although the magnitude of the displacements may change. In the negative 
state V; the symmetry is lowered to C,, due to a mixture of tetragonal and trigonal 
relaxations. When the Fermi level rises in the band gap the occupancy of the deep levels 
changes and the above processes take place. However, according to theoretical [27] 
and experimental [26] considerations Vs, forms a so-called negative effective- U system. 
This means that due to the relaxation the total energy for the system V: with two deep 
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electrons is lower than that for Vi:, which has only one localised electron. As a result 
the ionisation level (O/+)  lies below the level (+/2+). The effects of relaxation, which 
is not taken into account our calculations, are to lower the positions of the deep levels, 
remove the degeneracies and even change the relative ordering of the levels. Therefore 
the detailed comparison of our theoretical predictions with experimental results may 
not be very meaningful. The worth of our results is more on the trends they show. For 
example, the theoretical and experimental values of the deep levels are shown in table 4. 

Table 4. Comparison of theoretical and experimental ionisation levels for the Si vacancy. 
The energies are given relative to the top of the valence band. 

Energy (eV) 
Ionisation 
level Present theory Experiment 

(+/2+) 0.45 0.13a 
(Oi+) 0.55 0.05a 
(-/Q 0.66 0.42b 
(2-/-) 0.92 O M b  
(3-/2-) 1.00 

a [28]. 
[29]. 

It is seen that experimental values for the (+/2+) and (O/+)  levels are close to the 
top of the valence band whereas our values are in the mid-gap region. However, it is 
interesting to note that when the occupancy of the deep levels increases, the discrepancy 
between the theoretical and experimental values decreases. This probably reflects the 
fact that the magnitude of the outward relaxation of the vacancy decreases when the 
number of bound electrons increases [6, 27, 301. Thus our predictions, which assume 
no relaxation, should be the better the more negative the vacancy is. 

From the systems considered in this work, point defects in GaAs have attracted the 
most theoretical and experimental studies. We have compared our present calculations 
for the ionisation levels with different theoretical and experimental results in table 5. 
Results for vacancies and for the anti-site defects AsGa and GaAs are included. 

The first self-consistent Green function calculations for vacancies and AsGa anti- 
sites in GaAs were performed by Bachelet et a1 [31, 321 employing the pseudopotential 
method. They found that neutral Ga and As vacancies both induce a T,-type bound 
state with one-particle energy eigenvalue of 0.06 eV (VcOa) and 1.08 eV (VL’) above the 
top of the valence band. Our corresponding values, 0.08 eV for V:, and 1.20 eV for V i s  
agree well with these result. Bachelet et a1 did not calculate the ionisation levels for the 
vacancies. For the AsGa anti-site they estimated the ionisation levels ( + / 2 + )  and (O /+ )  
to lie at 0.83 eV and 1.10 eV, respectively (table 5) [32]. These values are in a very 
good agreement with our results of 0.88 eV and 1.07 eV. In a subsequent calculation 
Baraff and Schliiter [19] used a more accurate method to calculate the charge states 
and Coulomb tails and as a result all the energy levels were pushed upwards by about 
0.4 eV. For instance, according to these calculations VAS should always be positive. 
Thus, their new values shown in table 5 do not agree with our results. 

We have also included in table 5 experimental data for ionisation levels at point 
defects in GaAs, which can be compared with the theoretical results. On the basis of 
the deep-level optical spectroscopy measurements it has been suggested that VAS has 
(2-/-) and (-/0) levels at 0.04 eV and 0.18 eV below the bottom of the conduction 
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Table 5. Comparison of theoretical and experimental ionisation levels for point defects in 
GaAs. The energies (in eV) are given relative to the bottom of the conduction band in the 
case of V A ~  and relative to the top of the valence band in the other cases. 

Theoretical results 
Defect Ionisation Experimental results 

level Present work Previous works 

0.11 
0.22 
0.33 

-0.22 
-0.13 

0.88 
1.07 

0.1 1 
0.28 

Always -O.lgb -0.14' -O.lOd 
positivea -0.04b -0.045c -0.035d 

0.30" 0.0778 0.40h 
0.62a 0.238 0.70h 

a [19]. e [32]. 
[33]. ' [35]. 
[34]. g [36]. 
[71. [37]. 

band, respectively [33]. The interpretation of DLTS data gives similar results: 0.045 
eV and 0.14 eV [34]. According to recent positron lifetime experiments the levels 
(2-/-) and (-/0) are connected with energies of 0.035 eV and 0.10 eV below the 
bottom of the conduction band, respectively [7]. The positron lifetime measurements 
should be especially relevant, because they are sensitive only to negative- (and maybe 
neutral-) vacancy defects, and e.g. interstitial or anti-site defects can be excluded from 
the interpretation. Our theoretical results, 0.22 eV for (-/0) and 0.13 eV for (2-/-) 
measured from the bottom of the conduction band are very close to the experimental 
values. This is somewhat surprising because one would expect a larger deviation due 
to ionic relaxation as in the case of the lowest ionisation levels in Si. Moreover, now 
the theoretical results seem to lie about 0.1 eV below the experimental ones. 

A possible reason for this good agreement between the theoretical and experimental 
results is that the relaxation of the As vacancy in GaAs has a different character 
compared with the vacancy in Si. This conclusion is also supported by the fact that 
the negative effective-U behaviour is not seen for the vacancies in GaAs. However, 
in this experiment-theory comparison as well as in those below one should bear in 
mind that the scissors operator used can have a remarkable effect on the detailed 
conclusions. There exist no experimental data for ionisation levels in the Ga vacancy. 
This is probably due to its suggested instability prior to the recombination with Ga 
interstitials or to the change to a VAs-AsGa configuration. 

The comparison of the experimental and theoretical values for the AsGa anti-site 
indicates somewhat larger relaxation effects. Namely, according to the measurements 
[35] the ionisation levels (+/2+) and (O/+) lie at energies 0.52 eV and 0.75 eV above 
the valence band, whereas our results are 0.88 eV and 1.07 eV, respectively. For the 
GaAs anti-site there are controversial experimental results. Yu et al [36] give energies 
of 0.077 eV and 0.23 eV from the top of the valence band for the ionisation levels (-/0) 
and (2-/-), respectively. These results are consistent with our values of 0.11 eV and 
0.28 eV, and the comparison indicates nicely a small effect due to the ionic relaxation. 
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The experimental values by Wang et a1 [37] are at much higher energies, i.e. at 0.40 eV 
and 0.70 eV. Our results for both types of anti-sites and the experimental results, 
excluding the values by Wang et a l ,  are consistent with each other with respect to 
the effects of the relaxations one expects to happen. Namely, the relaxation connected 
with the GaAs anti-site should be small, because the ‘larger’ anion, As, determines the 
lattice constant of the perfect crystal, and thus no large distortion is expected when the 
’large’ As atom is substituted by the ‘small’ Ga atom. On the other, when the ‘small’ 
Ga atom is substituted by the ‘large’ As atom in order to create the AsGa anti-site it 
is natural that the distortion is large. Finally, it is also very satisfying to note that the 
calculations can reproduce the experimental separation between the ionisation levels 
in AsGa and also in GaAsAsGd if one compares with the results by Yu et al .  

4. Conclusions 

We have systematically studied the ionisation levels of ideal vacancies and anti-site 
defects in III-V compound semiconductors by self-consistent electronic structure calcu- 
lations. The cation vacancies induce acceptor-type levels in the band gap near the top 
of the valence band whereas anion vacancies induce donor-type levels near the top of 
the cuiduction band. Typically, cation vacancies have negative charge states and anion 
vacancies are usually positive, but when the Fermi level is near the conduction band, 
anion vacancies may also have negative charge states. The positions of the ionisation 
levels relative to the top of the valence band rise when the energy gap increases as a 
function of the inverse of the bond length. The rise of the donor-type levels is faster 
in indirect-band-gap semiconductors than the rise of the bottom of the conduction 
band. The opposite trend is true for the direct-band-gap semiconductors. Due to these 
differences in the behaviour of the donor levels, some of these levels may emerge into 
the conduction band in large-indirect-band-gap and in small-direct-band-gap semicon- 
ductors. As a result, anion vacancies in these cases end up having only positive charge 
states. The perturbations due to vacancies are seen to become stronger when the band 
gap of the semiconductors is larger. In large-band-gap semiconductors acceptor-type 
ionisation levels at cation vacancies are pushed deep into the gap and a positive charge 
state may appear. 

The cation anti-sites push up T2-symmetry states from the valence band and 
the anion anti-sites pull down A,-symmetry states from the conduction band. As a 
result, the former usually induce acceptor-type levels in the band gap near the top 
of the valence band and the latter induce donor-type defects near the bottom of the 
conduction band. However, the actual details depend strongly on the width of the 
band gap and on the relative size of the anti-site atom. 

The comparison of our theoretical results with available experimental data shows, 
within the uncertainty caused by the scissors operator, the effects due to lattice re- 
laxation. According to the experiments the lowest ionisation levels for a vacancy in 
Si are much lower in the band gap than according to our calculations for an ideal 
vacancy. However, the agreement is much better for the higher ionisation levels, which 
should be affected by a smaller relaxation. Also in the case of anti-sites in GaAs the 
experimental and theoretical results are very close to each other for GaAs, which is 
expected to be only slightly distorted. However, in the case of AsGa, which should show 
larger relaxation effects, the experimental ionisation levels lie considerably lower than 
the theoretical ones. Finally, according to experiments and our calculations for the As 
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vacancy in GaAs there are ionisation levels near the bottom of the conduction band. 
The experimental and theoretical values are rather near each other, which means that 
the relaxation around an As vacancy is not large, at least in comparison with positive 
and neutral vacancies in Si. 
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